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Many large scale calculations require the numerical integration of functions that 
are products of simple functions of a radius with a function readily expressed in Cartesian 
coordinates. The analytic singularity at the origin can cause a relatively expensive 
calculation when standard methods are employed. The application of known asymptotic 
expansions to this sort of problem can result in a considerable reduction in expense or 
increase in accuracy. In this paper, a set of useful expansions are stated. An approach 
based on extrapolation is described that leads to a method not unlike the Romberg 
integration. The emphasis here is on applications. For example, the rearrangement 
of the theory to provide a technique for grid-oriented calculations is discussed; and a 
full description of the possible effect of numerical instability, how to recognize it and 
how to alleviate it, is included. 

1. INTRODUCTION 

A potentially troublesome and expensive problem arises in multidimensional 
quadrature when the integrand function involves both functions of a radial coordi- 
nate and functions of Cartesian coordinates. Consider, for example, the three- 
dimensional function 

fk Y, 4 = r%(x, Y, 4, 01 > -3, (1.1) 

where rz = x2 $- y2 + z2 and g(x, y, z) is analytic. Unless 01 is an even nonnegative 
integer, f(x, y, z) is not analytic at the origin, and if the region of integration 
contains the origin, most standard quadrature rules are very inefficient. To see 
this clearly, one only needs to consider a simple special case of (1. I), namely, 

f(x) = rx = (x2 + y” + z2)1/2 x. (1.2) 

* Work performed under the auspices of the U.S. Energy Research and Development 
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Quadrature rules are either based on polynomial approximation, or are closely 
related to it. This function has infinite second derivatives at the origin, and so 
approximations based on polynomials (all of whose derivatives are finite) are not 
likely to be efficient. 

Often, the best way around this difficulty is to use a hyperspherical coordinate 
system. Thus,f(x) in (1.2) has the form rz sin 0, which has no singularities in (r, ~9) 
space. In cases in which the integration region is itself spherical, efficient quadrature 
rules to handle this problem are either available (see e.g. Stroud [4, pp. 267-293]), 
or can be constructed. 

However, in many cases, there are constraints on the overall problem that make 
it inconvenient or prohibitively expensive to do this. 

A familiar situation is one in which an extensive region of integration has been 
subdivided into an equally spaced cubic mesh. In this case, it is extremely incon- 
venient to deal with the region near the singularity in an essentially different 
manner. What is required is a variant quadrature rule, using the same grid of 
points, which can be used for a cube containing the singularity. 

In this paper, a technique for handling this integration without coordinate 
transformation is described. Specifically, we deal with the integral over the hyper- 
cube 

H:O <xi < 1, i=l’ N > *,---, , (1.3) 

of an integrand function of the form 

f(x) = 4W W-1 gh , x2 ,..., xd, a>-N, (1.4) 
where 

r2=x12+wx22+..+~ 2 N , 

and (r, 0) is a representation of (x) in hyperspherical coordinates. 
The functions 4(e), h(r) and g(xl , x2 ,..., xN) are analytic functions of their 

respective variables. 
Once a technique for this problem is available, the overall problem may be 

handled in a standard manner by breaking up the integration region into hyper- 
cubes, 2” of which have the origin as a vertex. For these 2N hypercubes, the spe- 
cial technique to be described is used. For the other hypercubes, any standard 
method may be used. 

Briefly, the method consists of extrapolation, eliminating terms in the appropriate 
error functional expansion. For example, we let Q(m)f stand for the midpoint 
trapezoidal rule approximation to If based on rrP function values. Let f(x) be 
the function (1.4). Then, when a is not an integer 

(1.5) 
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Here and subsequently, we use the symbol - to indicate that the relation is 
asymptotic. Each summation may be terminated at any point, the remainder 
having the same order as the first omitted term. This expansion and others like 
it are derived at length in Lyness [2]. They are listed for convenience in Section 2. 
Once the form of this expansion is available, and this requires the numerical 
value of cy, an obvious approach is to apply extrapolation to eliminate the early 
terms in the expansion. The mechanics of this process is described in Section 3. 
When there is no singularity, i.e., ai = an even integer, the terms Aar+.N+i drop 
out and this approach is reduced to a variant of Romberg integration. In Section 4, 
we give some numerical results that confirm that in some problems, this approach 
is very powerful indeed. 

In Section 5. we describe the application of these ideas to a large scale grid- 
oriented calculation in which the points for function evaluation are specified 
in advance. In this sort of environment, the extrapolation procedure is used to 
construct a suitable quadrature rule. 

In a less constrained environment in which function values at arbitrary points 
are allowed, the user has considerable freedom in choosing his mesh sequence 
(the set of values of m on which to base the extrapolation). He also has freedom 
to replace Q(“‘lf by a corresponding mN-copy of any other quadrature rule. This 
wide choice is limited by stability considerations and by the necessity of avoiding 
the use of an excessive number of function values. These questions are discussed 
in detail in Section 6. 

Finally, a word of warning about the scope of this method is in order. It may 
be applied only if the proper asymptotic expansion is known. To the author’s 
knowledge, there are only two classes of integrand functions for which this is 
known. One is the class considered here, which is essentially a point singularity 
P or ra In r, occurring at the origin. The other is a line singularity xa along a face 
of the hypercube, and is an N-dimensional analog of a one-dimensional result in 
Lyness and Ninham [3]. No results about mixtures of these singularities or more 
complicated singularities are known to the author, though there are some uncon- 
firmed conjectures. 

The importance of this warning is simply that if extrapolation based on an 
incorrect expansion is used, the results can be very inaccurate and misleading. 

2. SOME ASYMPTOTIC EXPANSIONS FOR THE ERROR FUNCTIONAL 

The results stated in this section are proved in Lyness [2]. They are asymptotic 
expansions for the error functional Q(“‘)f - If, where Q’“)f is an mN copy of a 
quadrature rule Qfdefined below for integration over the unit hypercube 

H:Odxi,(l, i = 1, 2 ,..., N, (2.1) 
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and If represents an exact integral 

If = j)(x) CPX. (2.2) 

The most familiar example is the N-dimensional Euler-Maclaurin expansion valid 
when f(x) is analytic. The significant results below apply to functions f(x) having 
a point singularity at the origin. 

First, we define a quadrature rule 

Qf = Q’l’f = f ad(xj>, Caj= 1, 
j=l 

(2.3) 

which approximates If: This rule is of polynomial degree d if it is exact for all 
polynomials of degree d or less, i.e., 

Qf-If=% fend, d = d(Q). (2.4) 

We term it symmetric if it is invariant under reflection about all the hyperplanes 
xi = ;‘, i = 1, 2,.. ., N; i.e., 

Qfi = Qg, f.(xl )..., xi )...) XN) = g(x, )...) 1 - Xi )...) x,), i = 1, 2 ,..., N. 
(2.5) 

The mY copy of this rule is the rule obtained by subdividing H into m” equal 
hypercubes of side l/m and applying a properly scaled version of Q to each; i.e., 

(2.6) 

where the sum over I = (11 , I2 ,..., IN) includes all mN distinct vectors for which 
Ii are nonnegative integers and maxi li < m - 1. 

In the expansions listed below, the quantities A,, B, , C, , A,‘, and B,’ are 
independent of m. They depend on the integrand function and the quadrature 
rule. Integral representations are given in Lyness 121, where these results are proved. 

For convenience, in these statements, we assume that Qf does not require an 
indeterminate function value at the origin. If it does, a minor modification stated 
in Result 6 below may be required. 

Results 1 and 1A below are standard, being the basis for Romberg integration. 

Result 1. Iff(x) is analytic in all variables within H, then 
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Result 1A. If g,(x) together with all its partial derivatives of total order p 
or less are integrable over H, then 

9-l 

QfnL1gp - Ig, = szl B&n8 + Wrrp). 

The next result is the fundamental one. 

DEFINITION. f,(x) is homogeneous of degree y (with respect to the origin) when 

f,@x) = W(x), for all h + 0. (2.7) 

Result 2. Iff,(x) has no singularity within the closed hypercube H, except at 
the origin 

with 
C N-W - - 0, y # integer. 

Results 2 and 1A may be used to derive similar expansions for any integrand 
function f(x) that may be expanded in terms of homogeneous functions. For 
example 

ResuZt 3. Let f(x) = P&C)) h(r)g(x), where (r, 0) is a representation of x 
in hyperspherical coordinates and 4(e), h(r), g(xl , x2 ,..., xN) are analytic in their 
stated variables at all points within H. Then 

QWf- If- c Arr+N+i ;&,";:y In m + c 2 , 
i=O a-1 

with 
C a+N+i = 0, 01 # integer. 

This result follows by using a multivariate Taylor expansion to express f(x) in 
the form 

p-1 

f(x) = c .L+i(X> + &(X>, 
i=O 

giving 
n-1 

Q’“lf- If= C (Qtm!fe+i - Ui+ij + Qtm’gp - Igp 3 
i=O 

(2.9) 

and applying Results 2 and IA. 
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When cy is not an integer, the coefficients Au+N+i and B, are locally analytic in 01, 
and one can differentiate Result 3 to obtain 

Result 4. Let F(x) == f(x) In r = rC In r+(e) h(r)g(x), with f(x) satisfying the 
conditions of Result 3: then 

01 # integer. 

Result 5. When 01 in Result 4 is an integer, the expansion includes terms in 
m-s, m-* In m, and m-“(In m)“. For details, refer to Lyness [2]. 

DEFINITION. The zero modified rule Q’“lf coincides with Qcm)f except that 
any function value at the origin is ignored. Thus, 

Q""y = Q""'f - $f(O), (2.10) 

where w. is the weight assigned by Qfto the origin. 

Result 6. When Qfrequires a function value at the origin, all results are valid 
with Qt”lf replacing Qfm)f, so long as an additional term K/mv is included in the 
expansion. This term is only required in Results 2 and 3 when y or OL, respectively, 
are integers, and is not required in Result 4. 

As mentioned above, the quantities A, B, C, A’, B’ depend on the quadrature 
rule and on the integrand function. For special classes of quadrature rules and 
integrand functions, some of these may be zero. 

Result 7. If Q is symmetric 

B,’ = B, = C, = 0, s odd. 

If Q has polynomial degree d(Q) 

B,’ = B, = C, = 0, 0 < s < d(Q). 

Result 8. If f(x) is a polynomial of degree d(f) 

A, = C, = 0, B, = 0, s > d(f). 

Result 9. If f(x) = P+(e) h(r) g(x), satisfying the conditions of Result 3 and 
in addition, h(r) g(x) is symmetric (or antisymmetric) about the origin, i.e., 

then 
h(r) g(x) = +N--r) d-x), (or --h(--r) A-41, 

Ai’ zz Ai = Ci = 0, i = cx + s + N, s odd (or even), 
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3. THE MECHANICS OF EXTRAPOLATION 

In the previous section, a list of results was presented, using which one may 
construct an error expansion for a certain class of integrand functions. Each 
error expansion has the form 

Q(V= If+ G(m) + a2h(m) + **. + a,f,(m> + wfP+lw, (3.1) 
where a, stands for a coefficient A, B, or C, andJ;(m) for a simple function of nz 
such as no, LK+ In m. The terms in (3.1) are arranged in decreasing order in m, 
i.e., 

~~$ds+1<“4!!(~d = 0, (3.2) 

and it is convenient to set cl0 = If and f&z) = 1. We now briefly describe the 
extrapolation process, adapting the notation used in Romberg integration. We 
require a set of integer values of m, termed the mesh sequence 

1 < m, -c m, < m2 < m3 < a-*, (3.3) 
and we denote a rule sum evaluation by 

Tj,o,o = Q”j’J (3.4) 

In Romberg integration, one carries out several extrapolations using distinct values 
of mj . Thus, extrapolation based on (m, , mkfl ,..., m,,,} is based on solving the 
set of linear equations 

Ti.o.0 = i Tk.e.sfs(mj)s j = k, k + l,..., k + p. (3.5) 
8=0 

This set is obtained from (3.1) by disregarding the O(fo+l(m)) terms. Tj,o,o and 
fs(mj) are known and the solutions Tk,p,s (S = 0, l,...,p) are approximations 
to a, (s = 0, I,..., p). We denote the matrix of these equations by Vra*~l and its 
inverse by J-‘tk**l, i.e., 

p.Dl = ( ytr.d)-1, 
V!n’pJ = f,(mj). 3,s (3.6) 

(This inverse is of course not calculated as a linear systems solver may be used 
instead.) Using this notation, the extrapolated value of Zf may be expressed in 
the form 

In conventional Romberg integration, where f$(m) = m-2n, the calculation of 
approximations T,,,,, may be carried out recursively using the Neville algorithm. 
Using this, a T-table of approximations to If is formed. However, this can be 
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used only in cases in whichJ;(m) form a geometric progression. In cases where 
there is a singularity, no convenient algorithm of this type is known to the author. 

If the set of mesh ratios form a Geometric progression, then a straightforward 
algorithm may be constructed for extrapolation for any of these asymptotic 
expansions. However, even in one-dimension, the use of such a set of mesh ratios 
is expensive. In two- and three-dimensions, the expense is relatively larger and 
usually prohibitive. 

Thus, in this generalization of Romberg integration, some of the attractive 
computational features disappear and the use of the Neville algorithm is usually 
replaced by the use of a linear equation solver. Nevertheless, the saving in terms of 
function evaluation can be very great, as we show by example in Section 4. 

In the rest of this section, we assume that the final term eliminated is an inverse 
power, that is, that f,(m) = ~?z-Q. The extrapolation condition number K,.,,,, 
associated with T,,,., may be defined as 

k+P 

the final equality being valid since the sign of r3[$‘] alternates with j. This is a 
measure of the amplification of small errors Ej in individual values of 7’j,0,0 that 
occur as a result of the use of finite precision arithmetic. Thus, if E, denotes a 
bound on the error in Tj,,,, and l j = ej,,; ( 8j ( < 1, and if the computation of 
Tk.P.0 is carried out exactly, then the error is bounded by 

(3.9) 

In view of (3.8), this condition number K,,.,, may be calculated using precisely 
the same algorithm as is used to calculate Tk,e,o, but with initial values (-1)j 
replacing Tj,,,, . 

Finally we mention that the elements r,., tLBpl depend only on the ratios 
mk : mk,+l : ‘-’ mk+p . Thus, the condition number K,,,,, is unaltered if all the 
mesh ratios are altered by a constant factor. 

4. NUMERICAL ACCURACY 

In this section, we give some numerical examples that illustrate the relation 
between accuracy and expense (in terms of number of function values) using extra- 
polation. Our first example is 

3J2e--r2e-x2 dx dy N 2.52551,35399,5. (4.1) 

.58d20/3-7 
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The reader will recognize a rather brutal, but integrable, singularity at the origin. 
The expansion provided by result 3 with a: = -312 is valid. When the quadrature 
rule is symmetric, application of Result 7 leads to 

However, the integrand function is symmetric about the origin, and so application 
of Result 9 gives 

Q’“‘lf- V-$ + +$ + 3 + g + --- . (4.3) 

These expansions are valid when Q tnr) stands for the midpoint trapezoidal rule 
or the endpoint zero adjusted rule. When Q is replaced by the degree 7 Gaussian 
rule G, we find 

The second example is 

If = 1’ 1’ r1!2e-rPe-rP dx dll N 0.33865,7671 I, 
0 0 

and reference to Section 2 gives, for a symmetric rule 

The third example is 

rf- f’ f’rxdxdy = $(7(2) 112 - 2 + 3 ln(l + 2’1”)) N 0.43931,73207,36262, 
‘0 ‘0 

(4.7) 
and 

In Table I, we list the accuracy, and the number of function values required 
in various attempts to evaluate these integrals. First, using the endpoint zero- 
modified trapezoidal rule with no extrapolation. Second, using a IZpoint, poly- 
nomial degree 7 Gaussian rule (Stroud [4, C, : 7-5 p. 255]), and third, using 
extrapolation based on the endpoint zero-modified trapezoidal rule. 
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TABLE 1 

Example + (4.1) (4.5) (4.7) 
Q 4Q) I Qf- IfliV [If = 2.5261 ; Qf‘ - If i ‘If I Qf- rf’l:V 

RPP 49 
RtW 1089 
RW’J 16,641 

(p’b 12 
G’3P’ 12,288 
G”28’ 196,608 

T 0.3,“C 37 
T 0.5.0 121 
T 0.9.0 1,633 

Asymptotic 
expansion 

0.40 
0.17 
0.08 

0.08 
0.04 
0.02 

1.7 x 10-S 
4.5 x 10-S 
1.3 X 10-10 

(4.3) 

[Qf = I.4961 9.3 x 10-S 4.5 x IO-3 
[Qf = 2.0801 2.4 x IO--’ 1.6 x lo-* 
[Qf = 2.3031 1.3 >: 10-s 

[Qf == 1.9771 2.5 x 1O-3 4.0 x 10-L 
[Qf = 2.4281 4.0 x 10-T 3.7 x 10-11 
[Qf’ = 2.4771 1.2 X 10-8 

1.2 x 10-Z 4.0 x 10-s 2.2 :< IO-” 
2.3 Y 1O-3 4.4 x 10-G 5.3 x IO-9 
2.4 x lo-’ 2.3 x lo-” 6.2 x lo-l1 

(4.2) (4.6) (4.8) 

a RtmJ Trapezoidal rule based on an (m + 1) x (m + 1) grid. 
* CPj 1Zpoint degree 7 Gaussian rule used on each subsquare of side 1,‘nz. 
e T,,bSO Result based on extrapolation using nr, , m, ,..., m, , where the mesh sequence is {m: = 

1, 2, 3, 4, 6, 8, 12, 16, 24, 32 based on expansion whose equation number appears in the final 
row using the trapezoidal rule. 

The first six lines of Table I illustrate what might occur in an attempt to “sledge- 
hammer” a result by simply using a standard rule with more and more points. 
Since the number of points v -= O(mS), and the first term in the error expansion 
(4.2) (or (4.3) or (4.4)) is E = O(PZ-~/~), ultimately, in the first example, E N KU-~/~. 
To increase the accuracy by a factor of 10, one must increase the number of function 
values by a factor of 10,000. In passing, we note that subtracting out the singularity 
involves the separate calculation of JJ r--3/z dx dy, which leads to a difficult special 
calculation. In the second and third examples, the sledgehammer approach, though 
expensive, is feasible. Using the trapezoidal rule, E - Ku-l in each case. Using 
the degree 7 Gaussian rule, E - KU-~/~. and E - KU-~ In v, respectively. 

The next set of three lines illustrates the numerical accuracy and cost using 
extrapolation. For the first example, we give two sets of results, corresponding to 
the use of asymptotic expansions (4.2) and (4.3) respectively. This illustrates the 
numerical advantage reaped by a user who notices that the factor e--TPe-r2 is sym- 
metric about the origin, and so eliminates zero valued terms like A31s/m3~z, using 
Result 9 instead of eliminating them numerically. This advantage is significant, 
but not essential to the calculation. 

A glance at the table indicates that these examples are arranged in descending 
order of difficulty. A rough measure of the difficulty is provided by the 
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“density” of terms in the expansion, or alternatively, the order of the pth term. 
For example, withp = 6, the final term in expansions (4.2) (4.3), (4.6) and (4.8) are 

respectively, and these are of successively higher order, indicating that problems 
requiring these expansions are arranged in descending order of difficulty. The 
same ordering prevails for all values of p. 

It is pertinent to remark once again that the third example with its innocuous 
looking integrand function rx, while easier than the other examples here, is indeed 
difficult to integrate numerically over a square because of the singularity at the 
origin. It is trivial using polar coordinates to integrate this over a circle or the first 
quadrant of a circle whose center is at the origin. It is also trivial to integrate r*x, 
which is a polynomial over either a square or a circle. By the same token, e-“‘g(x, JJ) 
is difficult and e&g(x, 4’) is easy. In practice, it is essential that the user realizes 
the difficulty of his problem, and this distinction is very important. 

5. APPLICATION TO LARGE SCALE CALCULATIONS 

In most large scale calculations involving two- or three-dimensional quadrature, 
constraints on the overall problem prohibit the use of iterative quadrature methods. 
Features of large scale problems include: 

(a) One wishes to calculate a set of integrals. 

(b) The same set is calculated a large number of times, incidental parameters 
in the integrand function being altered between each calculation in an overall 
iteration towards an acceptable set of parameters. 

(c) The integrand functions contain sets of common factors, some common 
to many of the functions and others independent of some or all of the incidental 
parameters, and so common to some or all of the iterations. 

(d) The domain of integration may be semi-infinite or infinite in some or 
all directions. 

In problems of this type, it is usual to set up a rectangular grid. Since the 
integrand function is much more intractable near the origin than away from it, 
the gauge of the grid is often increased several times as one moves away from the 
origin. The grid is finite and the contribution from the infinite tail is either estimated 
on the basis of its known asymptotic form or is ignored. 

Each point of this grid has a quadrature weight assigned to it (or perhaps several 
weights for different integrand functions). The quadratures are effected by treating 
each gridpoint in turn. At each, the various components of the integrand functions 
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are assembled, assigned their relevant weights and added into a set of running 
sums. 

In an environment of this nature, the direct use of extrapolation that may involve 
function values at arbitrary points is out of the question. However, the theory of 
extrapolation may be employed under certain circumstances to provide a more 
suitable set of weights. 

In practice, these weights are frequently determined from simple polynomial 
based rules such as Simpson’s rule or a four panel Newton-Cotes rule. Near the 
origin, accuracy is maintained only at the considerable expense of using a very 
fine mesh. In cases in which the nature of the singularity at the origin is known 
and an asymptotic expansion of type (3.1) is known, this information may be 
used to construct a more appropriate quadrature rule for use on the part of the 
grid near the origin. This would obviate the necessity for using an ultrafine mesh 
there, thus, either reducing the overall expense, or increasing the overall accuracy. 

We illustrate the technique for obtaining such a rule in a two-dimensional con- 
text. Here there are four squares, each of which has a corner at the origin. Each 
square is subdivided by the grid. Without loss of generality, we assume that these 
squares have unit side. It is convenient to choose the grid so that each of these 
squares contains hP subsquares, where A4 has as many different integer factors 
as possible but is reasonably small. For illustration, we take M = 12 and construct 
a rule that requires 169 function values for this square. This is based on the endpoint 
trapezoidal rule 

Qf = t(f(O, 0) + f(O, 1) + f(L 0) + f(L 1)). (5.1) 

Q(el)f requires (m + 1)2 function values, all of which lie on the 12 x 12 grid 
when m = 1, 2, 3, 4, 6, 12. Thus, the result T,,5,0 in (3.7) uses only these points, 
i.e., 

L,,, = ylQ’V-+ yzQ’?f + y3Q’3’f+ yaQ’“)f + ycjQ’?f + ~lzQ’~‘)f (5.2) 

The values of yi are determined from (3.6) using the functions fs(m) from the 
asymptotic expansion with 

m, = 1, 2, 3, 4, 6, 12, j q = 0, 1, 2, 3, 4, 5. (5.3) 

The m2-copy of the trapezoidal rule given by (5.1) may be expressed in the form 

Q”“lf = (5.4) 

where the double prime on the summation symbol indicates that the first and the 
last terms in the summation (those with index zero and index m) are assigned a 
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weight factor &. Substituting (5.4) into (5.2) we find, after some rearrangement, 
that 

(5.5) 

The weight matrix is fully symmetric, i.e., 

w(a, b) = W(12 - a, b) = W(b, a). 

For a ,( b < 6, the elements are given in terms of 

Pi = yili2, i = 1, 2, 3, 4, 6, 12, 

w(Q 0) = HP1 + P2 + P3 + PI + t-43 + l-4, 

~(292) = M2,4) = ~(296) = ~(476) = ~6 + ~12 , 

~(3, 3) = ~(3, 6) = /-Q + ~12 , 

w(494) = kl + CL6 + Pl2 9 

4696) I= ~2 + ~3 + ~2 + ~6 + ~12. 

Other than those listed above, 

44 8 = p12 3 a odd or b odd but (a, b) f (3, 3), 

and 
w(O, 6 = Mb, b), b > 1. 

In many problems, one may want to integrate several sets of integrand functions 
each set having a different asymptotic expansion. To do this efficiently, it might 
be necessary to construct several different quadrature rules; one for each set of 
integrand functions. If each were to use the set of points in (5.5) derived from the 
endpoint two-dimensional trapezoidal rule using mesh ratios (1, 2, 3,4, 6, 12}, 
then the values of yj in (5.2) would differ from set to set, but the formulas for 
w(a, b) in terms of yi would be the same for each set. 

Sometimes, it is not necessary to do this, if one is prepared for a penalty in terms 
of accuracy. For example, one may have a situation where one requires 64 different 
integrands of the form 

r-‘Wzi(r) g,,j(x), i,j = 1, 2 ,..., 8, 

and while in general the expansion is 

for the 15 integrands for which i = 1 or j = 1 symmetry conditions give 

A5,2 = A9/2 = -a* = 0. 
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While one has the option of two different 169 point rules, the rule designed for the 
majority of the integrands will also work for the easier 15 integrands, and be 
equally effective. By choosing not to work out a separate rule for the easier 
integrands, one has simply omitted obtaining some additional accuracy for those 
that would have been attainable on the basis of the available function values. 

The sort of numerical effect is illustrated in Table I where the accuracy using two 
different expansions (4.2) and (4.3) in the same example is given. 

A related point is that of checking the weights and abscissas. For rules based 
on polynomial approximation, it is usual to check a list of weights and abscissas 
for errors by integrating an appropriate set of polynomials and comparing the 
results with the known exact results. For the rule derived along the lines described 
above, at present, no complete set of functions for this purpose is known to the 
author. However, the rule should be exact for the constant function. If terms 
BJm2, B4/m4,..., B,,/m2t are among those eliminated, then the rule should be exact 
for all polynomials of degree 2r + 1 or less. However, this constitutes only a partial 
check, and is not sufficient to find all errors. 

6. GENERAL APPLICATIONS AND NUMERICAL STABILITY 

In any particular problem that is to be tackled using extrapolation, the overall 
form of the expansion is determined by the nature of the integrand function. 
However, the user has to choose a basic quadrature rule Q and a mesh sequence 
(m}. In the previous section, we discussed this question in the context of a situation 
in which one was restricted to function values at points on a grid. In view of this 
constraint, we suggested a mesh sequence {m> = {1,2, 3,4, 6, 12) using the end- 
point trapezoidal rule. In two-dimensions, this choice eliminates five terms of the 
asymptotic expansion at a cost of 169 function values. Without this constraint, 
that choice is not the best. For example, the same five terms may be eliminated 
using the midpoint trapezoidal rule with {m} = (1, 2, 3,4, 5,6} at a cost of only 
85 function values, but these are arranged in the square somewhat haphazardly. 
In this section, we discuss some of the factors that might affect a choice of Q 
and {m). 

For purposes of discussion, we shall limit our choice of quadrature rules to 
three, namely, the endpoint trapezoidal rule, the midpoint trapezoidal rule, and 
a higher degree Gaussian rule. We shall also limit the choice of mesh sequences 
to three. These are 

G: {m} = 1, 2,4, 8, 16, 32 . . . . 

F: {m} = 1, 2, 3, 4, 6, 8, 12 . . . . 

H: {m} - 1, 2, 3,4, 5, 6, 7 . . . . 
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The Geometric and Harmonic sequences represent extreme choices. In Table II, 
we list the number of function values required by the midpoint and endpoint 
trapezoidal rules using the first seven members of these sequences in dimensions 
1, 2, 3, and 4. Examination of this table indicates that the use of sequence G is 
extremely expensive, and that sequence H may be the most economic. However, 
the accuracy of the results are not commensurate from one sequence to another. 
The accuracy depends to some extent on the number of function values used, as 
well as the number of terms eliminated in the asymptotic expansion. 

TABLE II 

N=l 

N=2 

N=3 

N=4 

(I,& 3,4,&C 7) (1,2, 3,4,6, 8, 12) 
EP MP EP MP 

19 23 17 36 

157 133 225 274 

1,153 773 2,801 2,556 

8,305 4,657 34,497 26,482 

(1, 2,4, 8, 16, 32, 64) 
EP MP 

65 127 

4,225 5,461 

274,625 299,593 

17.85 x lo6 17.89 x lo6 

For a given sequence, our experiments have led us to believe that there is no 
discernable difference in accuracy between the midpoint and endpoint trapezoidal 
rule. Thus, on the basis of these sort of figures, one would be led to the conclusion 
that the midpoint rule and the Harmonic sequence might be a nearly optimum 
choice. 

If the calculation were carried out in arbitrarily high precision arithmetic, that 
would undoubtedly be the proper choice. However, as finite precision arithmetic 
is used, the overall stability of the calculation has to be considered. As we shall 
see, the amplification of noise level in function values introduces a component of 
error in the final result. This amplification is far more severe when the Harmonic 
mesh sequence is used than when the Geometric sequence is used. The sequence F 
was introduced by Bulirsch [I] in an attempt to compromise between expense and 
instability in one-dimensional Romberg integration. 

An initial source of computational error arises because the integrand ;function 
values are calculated using finite length arithmetic, and so they include a noise 
component. The routine deals with (1 + O,~~)f(x~) in place off(x,), where I Bi I < 1, 
and Ed is termed the noise level. For very simple integrands, like those in the 
examples, Ef is two or three units of E,,., , the machine accuracy parameter. For 
more sophisticated integrands, it can be higher. 

This error is amplified slightly when sums such as Qtmlfare calculated. If the 
number of elements in the sum is v, the relative error in Qfm)fmay be as high as 
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VEX, or if special coding is used, as low as Ed log, v. In our experiments, we found 
this error was usually about E,(v)~/~. 

The errors at this point are relatively unimportant and not unexpected. However, 
this error is seriously amplified by the elimination. Thus, when calculating 

the computational error l j in Qtmj)f could become amplified to I: / yrnj ( Ej . The 
extrapolation condition number, defined in (3.8) as 

K 0.~~0 = C I Ymj i 

is a useful measure of this error. As mentioned in Section 3, this number is readily 
calculated using the same algorithm as is used to calculate To,,,, . Its value depends 
on the nature of the asymptotic expansion and on the mesh ratio sequence. Some 
values are given in Table III. 

TABLE III 

Table of Values of K,,,,, for Three Mesh Ratio Sequences and Four 
Error Functional Asymptotic Expansions” 

Negative powers of 
m in expansion P G F H 

2,4,6,8 4 
10, 12, 14 I 
16, IS,20 10 

0.5, 2, 2.5, 4 4 
4.5, 6, 6.5 I 
8,8,5, 10 10 

0.5, 1.5,2,2.5 4 
3.5,4,4.5 7 
5.5,6,6.5 10 

0.5, 1,5, 2.5 3 
3.5,4.5, 5 
5.5,6.5 7 

1.95 
1.96 
1.96 

13.9 
17.7 
18.4 

20 
39 
46 

12.2 
20.8 
23.8 

6.2 
7.4 
9.2 

63 
250 
450 

95 
883 

2,720 

22 
156 
379 

6.2 
55.8 

552.8 

63 
2,494 

107,963 

95 
8,931 

904,363 

22 
291 

3,783 

Li These have f,(m) = rn? the values of s, appearing in the first 
column. 



362 J. N. LYNESS 

In many cases, the high condition number associated with the Harmonic 
sequence may compromise the accuracy of the result to an unacceptable extent. 
Whether this is likely to happen depends on the accuracy required by the user and 
on the machine precision being used. As an extreme example, if accuracy 
%eq = lo-” is required, and one is using a double precision program for which 
E&, = 10-16, the loss of seven or eight decimal places is not important and one 
could normally use the Harmonic sequence. However, in the same problem using 
a single precision program for which Ed = 10-6, considerable care might be 
necessary, possibly necessitating the use of the far more expensive Geometric 
sequence. 

In cases in which numerical stability might pose a problem, this effect may be 
alleviated by using a Gaussian rule of moderate polynomial degree in place of 
the trapezoidal rule. 

Leaving aside stability criteria, the results of our numerical experiments indicate 
that there is little significant difference in quality of results when measured on an 
accuracy per number of function value basis between using Gaussian rules and the 
trapezoidal rules. Whatever mesh sequence is used, the effect of removing some of 
the terms &/m2 leaves a more stable calculation. This comparison is illustrated 
in Table Ill. The fourth expansion is identical with the third except that BP = B4 = 
B6 = 0, and corresponds to the same problem using a degree 7 Gaussian rule in 
place of the trapezoidal rule. When one extrapolates to eliminate all terms up to 
a fixed order, the figures for the condition numbers are directly comparable. 
In a sense, by using a Gaussian rule, one has carried out some of the extrapolation 
analytically, and so less further extrapolation is required. A glance at the table 
indicates that there is a considerable reduction in the condition number. However, 
if the Gaussian rule involves negative weights an additional factor in the overall 
condition number x 1 ai I/x ai should be included. 

The user must distinguish clearly between the noise level and the accuracy of 
function values. Thus, a user may wish to integrate a function 4(x) to accuracy 
10-3. Since C#J(X) is cumbersome to evaluate, he replaces it by an easier function 
g(x), and he knows perhaps that / 4(x) - $(x)1 < 10-5. The user tends to think 
of the accuracy of the function values as being lo-“. However, the noise level simply 
depends on how #(x) is calculated, and if #(x) is a straightforward function, it 
may be near the machine accuracy parameter Ed,, . It is this noise level that is 
amplified by the computation. The difference / d(x) - #(x)1 is quite irrelevant in 
this context. 

If the calculation is carried out using a linear equation solver, the user must 
remember that the condition number associated with the matrix may be much 
higher than the condition number K,..,, , which is associated only with the first 
element in the solution. Thus, it can happen that the linear equation solver breaks 
down and returns an error condition in cases where a solution is quite feasible. 
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In the discussion presented in this section, we have done little more than to 
outline briefly some of the many considerations that might go into choosing a 
mesh sequence and quadrature rule for a specific problem. For the reader who 
would like a specific answer, the following approach is suggested. 

(i) Decide on a limit on the number of function values. 
(ii) Employ the mesh sequence F and the midpoint trapezoidal rule. 
(iii) Code this iteratively and in such a way that later on, one can alter the 

mesh sequence if desired. 
(iv) Arrange the program so that it returns the condition number together 

with the approximate result at each stage. 

This will produce a set of results (T,,,,, , K,,,,,) p = 0, 1, 2 ,..., jj. Human 
examination of these results is necessary. The accuracy may be roughly estimated 
by the agreement between the final two values of TO,p,O . If this estimate is not 
acceptable, the value of K,,,., should indicate whether this is due to instability 
or not. On the basis of this information and the remarks in this section, he is 
now in a position to plan a new strategy. 

7. CONCLUDING REMARKS 

Multidimensional quadrature is an expensive component in many large scale 
calculations. At the present time, it appears that any method with widespread 
application is likely to be too inefficient for use in particular problems. The future 
trend is likely to be towards special methods for different classes of frequently 
encountered problems. 

In this paper, one class of problem is treated, this being the one that occurs when 
the integrand function is a product of a simple function of a radius r, like P In r, 
with a well-behaved function of Cartesian coordinates. The theory is based 
on known asymptotic expansions for the error functional. Our emphasis is 
on the application of these in the context of large scale calculations with a 
computer. 

There remain many avenues for future research. One involves widening the class 
of allowed integrand functions by deriving corresponding expansions for perhaps 
functions xarB. In another direction, an efficient algorithm for solving the particular 
class of linear equations involved here (to replace the general linear equation 
solver) would be welcome. The impetus necessary to instigate such work may 
result from more widespread use of the present results. It is the author’s hope that 
this paper might help to bring this about. 
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